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Econometrica, Vol. 33, No. 1 (January, 1965) 

TWO-LEVEL PLANNING 

BY J. KORNAI AND TH. LIPTAK 

The planning task may originally be formulated as a single linear programming 
problem of the maximizing type. This overall central information (OCI) problem may 
be decomposed into subproblems that can be solved by mutually independent "sec- 
tors," coordinated by the "centre" through having the latter allocate the resources to 
the various sectors. The original OCI problem is then transformed into a two-level 
problem, in which the "central problem" is to evolve an allocation pattern where the sum 
of the maximal yields of the "sector problems" will be the greatest. 

The solution of the two-level problem is achieved by setting up a game-theoretical 
model. The players are on the one hand the centre, on the other the team of sectors. The 
strategies of the centre are the feasible allocation patterns, those of the sectors are the 
feasible shadow price systems in the duals of the sector problems. The payoff function is 
the sum of the dual sector objective functions. It is shown that if certain regularity con- 
ditions are satisfied, then the value of the polyhedral game which has thus been defined 
is the maximal yield of the OCI problem. In place of a direct solution of the polyhedral 
game, a fictitious play of the game is undertaken. 

The first part of the paper discusses a general model, within whose scope the symbols 
and definitions are presented and the mathematical theorems are proved. In the 
second part, the results of the first part are applied to a long-term macroeconomic plan- 
ning model. 

INTRODUCTION1 

IN RECENT years work has begun in Hungary on the application of mathematical 
methods to the higher levels of planning. Experiments are proceeding in two 
directions. One of these has been the use of mathematical programming in several 
sectors of industry, to form a basis for their plans. The calculations-some of 
which have been completed-use economic optimum criteria to deterniine the 
most favourable program for the economic activities in the particular sector being 
considered :' production, producers' utilization of capital, exports, imports, 
investments, etc. 

The other direction has been the use of input-output tables (static Leontief 
models) in national planning.3 The National Planning Bureau now makes regular 
use of the input-output matrix of the economy to check the inner coordination of 

1 The authors first published the method treated in this paper in duplicated form under the 
aegis of the Computing Centre of the Hungarian Academy of Sciences in May, 1962 [13], and, 
with the addition of a revised version of the mathematical part, in October, 1962 [17]. 

An earlier version of this paper appeared in Hungarian in the Publications of the Mathematical 
Institute of the Hungarian Academy of Sciences [14]. A paper by Liptak [18] discusses a further 
developed version of the "general model" treated here. 

2 See [12]. 
3 Detailed information on the use of input-output tables in Hungary is presented in the material 

of the scientific conference held in Budapest in 1961; see [6]. 
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142 J. KORNAI AND TH. LIPTAK 

the annual and five-year plans. This is the first mathematical tool to have been 
used in Hungary for the preparation of macroeconomic plans. It is, however, as is 
generally known, not suitable for optimization and thus only useful in achieving 
the correct proportions among sectors. 

A survey of the situation thus leads to the next logical step-the need to devise 
procedures that will permit optimization, but this time for the whole of the national 
economy. This need is frequently expressed by the practical planners, and the 
Hungarian scientific literature on the subject contains such proposals. The ideas 
advanced so far have, however, not been able to overcome the basic difficulties: 
Either one sets up a highly aggregated programming model, in which case the 
freedom of choice is extremely narrow, and the extent of aggregation and resulting 
excessive simplifications endanger the utility of the computed results. Or else, if 
one builds a model large enough to be free of these deficiencies, then not even high- 
power electronic computers will be able to cope with the numerical solution of 
the problem. 

The present research project has been aimed at decomposing the large pro- 
gramming scheme. This idea has appeared several times in the literature of macro- 
economic planning-it is sufficient to refer to the work of Kantorowich [9], of 
Frisch [5], and to the paper of Trzeciakowski [24]. There are mathematical methods 
for the decomposition of linear programming tasks of special kinds, e.g., those in 
the papers of Dantzig and Wolfe [3, 4], but it has been found that the known 
procedures do not provide solutions to this problem. Thus if the decomposition 
procedure of Dantzig and Wolfe were applied to the concrete macroeconomic 
model in hand, the "coordinating program" would still be of such size as to be 
unmanageable for computing with the usual processes (e.g., the simplex method). 
Another approach was therefore adopted. 

The planning task may originally be formulated as a single linear programming 
problem of the maximizing type, whose size will be too great for the given comput- 
ing facilities. This we shall henceforth call the over-all central information problem 
(OCI problem). The OCI problem may be decomposed into subproblems that can 
be solved by mutually independent "sectors," coordinated by the "centre," which 
allocates among the sectors the limitations prescribed in the OCI problem (the 
resources, materials, and labour). The original OCI problem is then transformed 
into a two-levelproblem, in which the "central problem" is to evolve an allocation 
pattern where the sum of the maximal yields of the "sector problems" will be 
greatest. 

The solution of the two-level problem is achieved by setting up a game-theoretical 
model. The players are, on the one hand, the centre, on the other, the team of 
sectors. The strategies of the centre are the feasible allocation patterns, those of the 
sectors the feasible shadow price systems in the duals of the sector problems. The 
payoff function is the sum of the dual sector objective functions. It 1S shown that if 
certain regularity conditions are satisfied, then the value of the polyhedral game 
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which has thus been defined is the maximal yield of the OCI problem, and that 
with the help of its optimal strategies, the solution of the OCI problem can be 
obtained. 

In place of a direct solution of the polyhedral game, a fictitious play of the game 
is undertaken. In the course of this, each sector separately evaluates the suitably 
chosen initial allocations of the centre (by means of dual linear programming), and 
reports back to the centre. The centre, applying a certain procedure, correspond- 
ingly modifies its initial allocations and sends down new directives to the sectors, 
which again evaluate these, report back to the centre, and so on. The iteration 
thus obtained permits the OCI problem to be solved with any required degree of 
accuracy, in the sense that a sufficient number of iterations will lead to a feasible 
OCI program whose yield will differ from the maximum OCI yield by as small an 
amount as it is wished to stipulate. Since planning according to this method takes 
place alternately at two levels-the centre and the sectors-organically interlinked 
with one another, continuously supplementing and correcting each other, the 
authors have called their procedure two-level planning. 

Actually, the inspiration for the development of the allocation technique of the 
OCI problem and the iterative method of solution was derived from the present 
planning practice in a Socialist economy. The method to be described is in some 
degree an imitation of the usual course of planning. The National Planning 
Bureau, acting on the basis of the requirements of economic policies and of general 
information about the various sectors, works out a preliminary draft plan which 
contains general targets (quota figures) for the sectors. The centre makes a provi- 
sional distribution of the available resources, material, manpower, etc. among the 
sectors, and at the same time also allocates their output targets. The sectors then 
proceed, through their own detailed calculations made on the basis of their con- 
crete conditions, to give "substance" to the quotas and to lend concrete meaning 
to the central targets. In so doing, they also make recommendations for changes to 
the Planning Bureau. This is what is in economic usage called "counter-planning." 
On the basis of the counter-plans the National Planning Bureau modifies its 
original targets and again sends them down to the sectors. The method proposed 
here is an attempt to aid this process of planning and counter-planning by means of 
objective criteria. 

The procedure recommended also simulates the usual practice of planning in 
another respect. It repeatedly happens that the centre gives the sectors certain 
directives and asks them to report on the degree of economic efficiency with which 
the task can be carried out. The sectors express the efficiency of their activities 
through various "indices of economic efficiency," whose structure is prescribed by 
the centre. The method to be treated incorporates this reporting-back process in a 
unified system, where the sectors at each step report back one type of economic 
efficiency index-the shadow prices derived from programming-to the centre for 
the evaluation of the directives obtained from there. 
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Mention has been made of the fact that, in some sectors of industry, mathematical 
programming methods are also being used to elaborate plans on the sector scale. 
In these programming models certain directives received from the National 
Planning Bureau-the output targets, manpower limitations, etc.-figure as 
constants on the right-hand side of the constraints. These programs indeed suggest 
that it ought to be worth while to compare the results of the sector programs and 
utilize them to improve the directives and quotas derived from the national plan. 
The function of the proposed process is to lend an organized form to such com- 
parisons and the macroeconomic plan corrections based upon them, in fact to 
link up organically the programming work done at the sector levels. 

The first part of this paper discusses a general model, within whose scope the 
symbols and definitions may be more easily presented and the mathematical 
theorems more easily proved. Section 1.1 details the transformation of the OCI 
program into a two-level one, while Section 1.2 expounds the latter's transforma- 
tion into a polyhedral game and its iterative solution.4 These sections permit an 
insight into how the method may be used for the solution of general linear pro- 
gramming problems; some questions which arise and an example are dealt with 
briefly in Section 1.3. In the second part of the paper, the results of the first are 
applied to the concrete model mentioned in the Introduction, i.e., to the problem 
of long-term macroeconomic planning. Section 2.1 is a description of the model, 
Section 2.2 presents the process of iteration, and Section 2.3 discusses some pro- 
blems of economics arising in connection with the model. 

1. THE GENERAL MODEL 

1.1. The transformation of the over-all central information problem into a two-level 
problem 

Let 

(1.1) Ax( b, x >0, c'x-+max! and y'A kc', y >0, y'b-+min! 

be the canonical forms5 of the primal and dual versions, respectively, in the OCI 
problem of the general model. The primal variable of the OCI problem (the vector 
x) is called the OCI program, the dual variable (the vector y) is the OCI shadow 
price system. Let X denote the set of feasible OCI programs, and e* the set of 
optimal OCI programs. Let 9/ be the set of feasible OCI shadow price systems and 

4 The symbols used in these sections are as follows: Greek letters denote real numbers; small 
Latin letters (except i and n) mean vectors; i, n, and N are positive integers; capital Latin letters 
(except N) denote matrices. The prime is used for transposition. A vector (if not qualified) is 
understood to mean a column vector. Script characters in capitals are used to indicate sets. 

5 The primal-dual versions of all linear programming problems can be transformed into the 
symmetrical form (1.1). 
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ON* the set of optimal OCI shadow price systems,6 i.e., 

(1.2) X= {x:Ax b, x >0}, X* = {x*:x*e, c'x* =max c'x}, 
xer 

(1.3) C = {y:y'A > c', y >0}, OY *={y *:yeC-, y*'b =min y'b} . 
yew 

Let it be assumed that the OCI problem is solvable, i.e., that an optimal OCI 
program exists: *# =. It is known then that there also exists an optimal OCI 
shadow price system8: * &=A . Moreover, the maximum value of the objective 
function in the primal version and the minimum value of the objective function 
in the dual version are equal-their common value is the optimum P of the OCI 
problem: 

(1.4) max cx = min y'b=c'x*=y*'b=P (x*EX, y*e-*) 
xeX y 

The solvability of the OCI problem is incidentally equivalent to the assumption 
that there exists a feasible OCI program and also a feasible OCI shadow price 
system,9 i.e., 

(1.5) . # and 0Y#&. 

Let 

(1.6) A =[Al,. , A.], x= xl~ ' c'[cl, ... ., CIn 

be the mutually corresponding partitioning of the matrix A, the OCI program x, 
and the OCI objective function-vector c' in the primal version of the OCI problem. 
Then in place of (1.1) the equivalent forms 

Alxl+ ...+A x"> y'Al k' j 

(1.7) l nn? t >? C' 

I c'x1+ ..-.+c+x -*max!J y'b2nmin! f 

may be used. 
If the sum of the vectors u,.. . ., un (of the same size as the bounding vector b) is 

itself b, i.e., if it satisfies the bounding vector partitioning condition 

(1.8) ul+ ... +u.=b, 
6 In the case of elements z of arbitrary nature, {z: } denotes the set of those elements z 

which satisfy the condition following the colon. 
7 & is the symbol for the empty set. 
8 Goldman and Tucker [8, Corollary 1A, p. 60]. 
9 Goldman and Tucker [8, Theorem 2, p. 61]. 
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then the vector 

(1.9) u= 

LU n 

composed of them is called a central program, the vector ui is the ith sector com- 
ponent of the central program u, while the ith sector problem under the celntral 
program u (or under the sector component ui) is understood to mean the linear 
programming problem 

(1.10) 
Aixi, ui, xi >0, cixi-+max! and yAMi>c, y >0, y'b-+min! 

In (1.10) xi is the ith sector program, while yi is the ith sector shadow price 
system. In the ith sector problem under the sector component ui, let ?i(u,) stand 
for the set of feasible sector programs, X*(ui) for the set of optimal sector programs, 
@Yi for the set of feasible sector shadow price systems, and 9*(ui) for the set of 
optimal sector shadow price systems, i.e.: 

(1.11) [- i(ui) = {xi:Aixi< ui, Xi >0}, 

Li(Ui)={xx Xj(uj), C'x* = max cix }, 
xiexi(uj) 

(1.12) [9/i = {yi:yA>ci, yj>O} 
['*14(ul) = {y:yi :6i, y,'ui = min y'ui} (i= 1, .., n). 

yic-ol 

Let us find the condition for the solvability of all the sector problems. Since it 
follows from (1.12) and (1.3) that 03(=0r ... nr)Y, and, because according to 
the assumption made with regard to the solvability of the OCI problem, (1.5) 
states that ?f# 0, therefore 

(1-13) oyio (i= 1,... ,n). 

Hence two necessary and sufficient conditions may be deduced for the solvability 
of the ith sector programmning problem under ui. The first is that 

(1-14) Xi(Ui)00 
9 

The second is that yi ui is bounded from below on the set qY .10 This latter statement 
is best put in another form. Let 

(115 Xy =s Y' .,A Y. q tr .. ,i 
. 
rq 4, = 

,_ 
'q = _ ~i , % i>%/i>0 

10 Goldman and Tucker [8, Corollary IB, p. 60]. 
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be the canonical decomposition"l of the polyhedral set q0/i. Then the boundedness 
condition of y ui on the set q!Y/ may be written in the form 

(1.16) Y'U i >O . 

Let those central programs for which all the sector problems are solvable be 
called evaluable central programs. According to (1.8) and (1.16) the set X of the 
evaluable central programs can be written in the form, 

(1.17) :{rull U1+ ... +un=b, Yui>O-.. .1 nun>O}. 

_Un- 

0 is therefore a polyhedral convex set. 
Let X(u) denote those OCI programs which may be composed from the sector 

programs feasible under the evaluable central program u = [u ... ., u']'. Then 

(1.18) 8(u) = X(u 1) x ... x (n(Un)= I [:11 :x,1e?C-(u), .... , Xne8Cn(Un)} 

The (proper or improper) subset 1 of the set * consisting of all the evaluable 
central programs, is said to generate X, or in other words 9/ is the generating set of 
X if 

(1.19) = U X(U). 
uEV 

For the case of 1=, (1.19) is valid, i.e., the non-void polyhedral convex set 9i 
consisting of all the evaluable central programs generates the set 9 of the feasible 
OCI programs. This may be proved in two steps: (1) From (1.5), 9C &. Let 
x=[xl .. ., x']'c-9, and let the components u,=A1xl, ... * Un- I = An- 1 Xn_ 1, 
un=b-(uj+ ... +un_1) be defined. Obviously xjeXG(u,), so that 9i(ui)# 
(i= 1,.. , n), and consequently, because of (1.14), u= [u ... ., u']' is an evaluable 
central program, so that +( . * is therefore a non-void set. Moreover, xeG(u), 
and since the above construction provides such a central program, u&* for each OCI 
program xe9; therefore 9 c Uuc&X(u). (2) If u = [u', . . . , u']'c-* and xiEX9(uj), 

11 Goldman [7, pp. 44-49.] 1' denotes a row vector whose every component is 1. In (1.15) 
therefore, qi and qi are socalled probability vectors, i.e., nonnegative vectors, the sum of whose 
components equals 1. Yi is the matrix consisting of the extreme points of W. If Y is bounded, 
then by definition YF = 0. Otherwise, YF is the matrix consisting of the extreme vectors of the set 
qi, which consists of the probability vectors satisfying the reduced homogeneous system yAj>0, 
y > . 

12 Ja X V X ... is the direct product of the sets W,. ... If W9, , ... are sets in column 
vector spaces, then the general element of the direct product set is the column vector composed 
in the manner shown by (1.18). 
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i.e., if Ai xi ui, xi >0 (i= 1, . . . , n), then because of the bounding vector parti- 
tioning condition (1.8), A1x1 + .. A.... +u =b, x=[x'l,..., 

xj]' >0, so that xe-1. Hence X(u) c X, and U uP2(u) c X. This completes the proof. 
The generating property of (1.19) may also be a property of a non-void proper 

polyhedral subset of the set *i. By way of an example actually used in the model, 
consider the following: In the case of a matrix A of special form, (1.7) may assume 
the form 

(1.20) A*x+... +A* x< b, 
A n Xn 

'Al xl b 0 

(1.21) 

(1.22) x, >0,. . ., Xn >.0, 

(1.23) c'x,+ ... +c x-max!. 

(Here A? xis b comprises those conditions of the OCI problem which only refer 
to the ith sector. These conditions may be called the special sector conditions of the 
ith sector.) It is useful here also to put the central program in the form 

(1.24) u= [l:: ui]u' U=L ...,n) 

and in this case the bounding vector partitioning condition is expressed by the 
equations 

(1.25) U# + ...+U# =b#, 

(1.26) uo+ ... +u%=b? (i=l1, ... , n). 

Let X here again stand for the set of all the evaluable central programs, and qj 
here denote that subset of *i in which each sector attains in full the bounds occur- 
ring in its special sector conditions, that is, 

(1.27) 1={u= I uC-* uJ= * * ,u, = U Un 

It is obvious that 9/ is a non-void convex polyhedral subset of , which does not 
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necessarily comprise every evaluable central program.'3 
Returning to the general case, let 6 now be a non-void convex polyhedral 

subset of *; such that it generates X. Let us fix '? and let its elements be called 
feasible central programs. For any feasible central program u= [u', . . , uj]', the 
sector-optima cpi(ui)=maxx,ex,(u)c'xi= min,,y, yiu (i= 1, . . ., n), and their 
sum, the over-all optimum p(u)=(p(ul)+ ... +Pn(un) under u may be defined. 
These are continuous and piecewise linear concave functions of u. For if yi1 ... 

YiNx denote the extreme points of 9,, i.e., if Yi = [yil, . . ., YiNi] can be substituted 
in (1.15), then because u is evaluable, Ti(ui) =minY,cy,yuiv=min{yij ui, , Y.NiUJ 

so that it is the lower envelope of a finite number of linear functions (i= 1, . .. , n). 
The two-level problem obtained from the OCI problem by means of the sector 

decomposition (1.6) and choice of the set of feasible central programs as above is 
understood to mean a problem as follows. 

(1) At the "central level," to determine the feasible central program(s) which 
yield(s) the maximal over-all optimum, in other words to solve the concave pro- 
gramming problem, ueqi, q(u)-+max! and to determine the set 

(1.28) *= {u*: (u*) = max ?(u)} 
ue0? 

consisting of the optimal central programs. 
(2) At the "sector level," to determine in each sector the optimal sector pro- 

gram(s) belonging to the optimal central program component(s), i.e., for each 
= [u*',.. ., u*']'e(* to solve the sector problems Aixi ut*, xi >0, cxi-+max! 

-thus to determine the sets 12*(u*) for i= 1, . . , n, defined in (1.1 1). 
(3) To compose the OCI program(s) which can be obtained from the optimal 

sector programs under the optimal central program(s); in other words, to deter- 
mine the union of the sets 

(1.29) X7*(u*)=.j (u ) x ... x.. 
.Xn,= 

in the form 

U *(u*). 
u*eo&* 

THEoREm 1: Any two-level problem derived from a solvable OCIproblem is itself 
also solvable, and its solution is equivalent to the solution of the OCI problem: 

(1.30) q *@ and _T= U X*(u*) 
u*ef,s* 

13 E.g., for the case of b# 0 , b' > O, V is a proper subset of + 
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The maximum value of the over-all optimum is equal to the optimum of the OCI 
problem: 

(1.31) max (u)=p(u*)= max c'x=P (u*el*) . 
ueV xex 

PROOF: The statements of the theorem may be read from the following: 

P = max c' x = max c' x = max (max c'x) 
xeX xe UX(u) uee xex(u) 

ueV 
n 

= max ( max c, x) = max p(u) = (p(u*) . 
UeA? i= 1 jXiei(uj) Ue 

1.2. The transformation of the two-level problem into a polyhedral game, and the 
latter's iterative solution 

The objective function of the concave programming problem to be solved at the 
"central level" of the two-level problem is the over-all optimum p(u). This function 
may indeed be determined on the basis of the data of the OCI problem and its 
decomposition into sectors, but it is not an easy task. The two-level problem is 
therefore suitably transformed. Let Y" denote the set of feasible sector shadow 
price system teams according to (1.12): 

(1.32) - =qY1 x ... x9IY.={v= Yl: y e@1, ***, YnCY}. 

Then the following expression is obtained for the over-all optimum: 
n n n 

(1.33) p(u) = pi(ui) = E minyu1 = mun E yiuj = minv'u. 
i=1 i==1 yifef yicji i=1 VeV 

(i1., n) 

Hence, according to (1.31), the following may be written for the OCI optimum: 

(1.34) P = max min v' u . 
Uet veV 

Let us define a polyhedral game"4 in the following terms: Let t1 be the set of 
strategies of the maximizing, and 1/ of the minimizing player, and let the homo- 
geneous bilinear function v'u (ue-i, ve") be the pay-off function of the game. 
The maximizing player may be identified with the "centre," the minimizing player 
with the "team of sectors.""5 Consequently we may speak of a central strategy in 
place of the feasible central program, sector strategy in place of the feasible sector 
shadow price system team, and in the case of both strategies we may consider the 
various sector components of the strategy. The game which has thus been defined 

14 See Wolfe [25]. In this case m = n, X= , Y = *, A =-- E = identity matrix. 
15 See the definition of a "person," e.g., in McKinsey [20, p. 4, para. 3]. 
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is called the polyhedral game derived from the two-level problem or from the OCI 
problem through the given decomposition of sectors and the given choice of the 
set of feasible central programs, in symbols: (V, I'*). What the relation (1.34) 
expresses is that the optimum of the OCI problem is the max-min (lower) value of 
the polyhedral game derived from it. The connection between the OCI problem 
and the two-level problem and the polyhedral game derived from it is contained 
in the following theorem: 

THEOREM 2: A polyhedral game derived from a solvable OCI problem is itself 
solvable and its value equals the OCI optimum. The optimal strategies of the "central 
player" are the optimal central programs appearing in the corresponding two-level 
problem. Among the optimal strategies of the "sector-team player" there is always a 
strategy whose sector components are equal; to be optimal, the necessary and 
sufflcient condition for a sector strategy whose sector components are equal is that it 
should be the optimal counter-strategy against some central strategy.16 In an optimal 
sector strategy whose sector components are equal, this common sector component 
forms an optimal OCI shadow price system, and vice versa. 

PROOF: (1) In the case of a solvable OCI problem the OCI optimum b exists and is 
finite, while according to (1.34) it is equal to the max-min value of the polyhedral 
game (1, I'). From this it follows, according to the theorem of Wolfe [25], that 0 
is at the same time also the min-max (upper) value of this game, so that (01, $') is 
solvable, and its value is P, and both players have optimal strategies. 

(2) Since according to (1.33) p(u) is the minimum of the payoff function v'u on 
the set Y'*, the set consisting of the optimal strategies of the central player equals 
the set in (1.28). 

(3) Using the notation of (1.3)-(1.12) it will first be shown that 

ONy if ucqj* 
(1.35) /l(u1)n . ... n9/,,(u,) 

= kX9 if u , 

so that an optimal counter-strategy, the sector-components of which are equal, 
exists only as a counter-strategy against some optimal central strategies, but then 
always exists, and the common sector component is an optimal OCI shadow price 
system. As the first part of the proof of (1.35), it can be demonstrated that for 
y*e91*, u*&1* it is true that y*e 9*(u*), is 1, . , n. For if the opposite were the 

n n n 

case, then we would have P=q(u*) = E n (u)u= E mm yu7< E y*'ui= 
i=1 i=I Yje'W i=1 

16 Oe -' is an optimal counter-strategy against the central strategy ue q, if z'u = minve. v'u= 
T(u). 
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n 

y ' u= y 'b = 0P, which is impossible. As the second part of the proof of (1.35), 

it can be shown that in the reverse case, for pec-?*(-i), i= 1, ... , n, it is true that 
n n n n 

9eX?', a&1*. For let ye?IN; then y' b=y' E i = E y'ti > E minyiD = Z i(ui) 
i=l i=l i=lyseas i=lpA 

i 

n n 

p() = '=9 Di j = =9'b, so that y'b > 9'b, i.e., 9'/**. It follows, further- 
i=1 i=l 

more, that (pi) =9' b = P, so that ae6c*. (1.35) has thus been proved. To complete 
the proof of Theorem 2 it is now only necessary to show that for any optimal OCI 
shadow price system y, the sector strategy v = [y'], . . ., y*']' with equal sector 
components y* is an optimal one. For this it is sufficient to demonstrate that v, 
together with any optimal central strategy, u *c-, forms a saddle-point of 
the function v'u in (W,r). For, if we let u *= [u7,. . . , uT']' be the chosen opti- 
mal central strategy, and u = [u', . . ., u1]'ec as well as v= [y', . . ., 

V* n n n n 
be arbitrary, then vu' u = i=y*' Zuij=y*'b=0=y* EZU= Z U.= 

i=1 i=l i=l i=l 
n 

v 'u yiu= v'u*, so that v'u < v 'u*< v'u* (u&U, vel/). Theorem 2 is thus 
i=l1 

proved. 

The OCI problem has thus been reduced to a solution of the polyhedral game 
(q, V) derived from it. To find a solution which would utilize the decomposition 
of the problem and be built up of partial calculations that can take place separately 
at the centre and in the sectors, we define the concept of an evaluable sector 
strategy (or an evaluable sector shadow price system team). This is understood to 
mean a sector strategy, veY'V, against which there exists an optimal central counter- 
strategy; in other words, one where the linear programming problem u&U, 
v'u-+max! is solvable. Let a derived polyhedral game (91, V) be called regular if all 
its sector strategies are evaluable. It is henceforth assumed that the polyhedral game 
(&&, I ) is regular. 

Consider that, according to the definition of a two-level problem, every element 
of O is an evaluable central strategy, i.e., the linear programming problem 
veSK, v'u-+min! is solvable for every u e- V. In the case of a regular polyhedral 
game, therefore, there is an optimal counter-strategy against each strategy 
of both players. It hence follows that all regular polyhedral games are strate- 
gically reducible17 to a matrix game.18 Let 9 = UA +U< and Yz' = VA+ V< 
be the canonical decomposition of the strategy sets concerned. From the two kinds 
of solvability assumptions it immediately follows, analogously with (1.16), that 
V' U < 0, V/U = 0, and ' U > 0, and moreover that the strategy u = Up + AUp Ei V 

17 A game is said to be strategically reducible to another game if the latter is solvable and its 
every solution (optimal strategy-pair) is a solution of the original game, too. 

18 For a definition of the matrix game, see, e.g., Karlin [10, p. 17]. 
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can (in the wide sense) be dominated by the strategy U/ = Up E UA; the strategy 
v = Vq + u Vq E Y, by the strategy vL = Vq E VA, i.e., that for all strategies v00e, 
VO u v?' uA, and for all strategies uo e 91, v' uo > vL'u0, (wherep,fp, q, q are probability 
vectors, and A and ,u are nonnegative numbers). 

The polyhedral game (91, I'f) is therefore strategically reducible to the polyhedral 
game (UA, VA), and this in turn is isomorphic with the matrix game having a 
payoff matrix V' U. It should be pointed out that this matrix game is only stated in 
an implicit form since the payoff matrix V' U is not directly known, the only 
available fact being that U and V are the matrices composed by the extreme vectors 
of the polyhedral sets 91 and <', defined by the inequality systems of the centre 
and the sectors, respectively. If, therefore, it is intended to find a solution of the 
regular polyhedral game (91, -*/) by solving the matrix game with the payoff 
matrix V' U, then for this reason itself-apart from the difficulties of a computing 
problem of at least the same size as the original OCI. problem-it is impossible to 
apply direct calculation procedures. 

It is possible, on the other hand, to use the fictitious play method of Brown and 
Robinson.'9 According to this method, against each central strategy ue91 of the 
regular polyhedral game (91, Y'i) it is possible to state an optimal counter-strategy 
v*(u)e VA, while against each sector strategy veYl' it is possible to state an optimal 
counter-strategy u*(v)e91A, for which 

(1.36) v*(u)'u = min v'u, vIu*(v) = max v'u 
ve'r us 

holds. The term v*(u) is called the regular evaluation of u, u*(v) of v. The regular 
fictitious play of the regular polyhedral game (91, Y") is understood to mean the 
construction according to the rule stated below of the strategy series u*<K>, 
u*<2> .. ., u*<N>, . . . within UL, and v*K >, v*<2>, . . . , v*<N>, . . . within VA. 

Phase 1. Step I. Select any central strategy u(')eUA. 
Step II. By definition u*<1> =u('). 
Step III (The regular evaluation of u*K 1>). The determination of 0) = v*(u*< 1>). 
Step IV. By definition, v*< 1> = v(l). 
The process goes on for phases 2, 3, .... 
Phase N (N=2,3, ... .). Step I (The regular evaluation of v*<N- 1>). The deter- 

mination of u (N) =u*(v*<N -1>). 
Step II ("Mixing" with the term of the previous phase). The calculation of 

u*<N> = [(N-1)/N] u*<N-l > +(l1/N) U(N). 

Step III (The regular evaluation of u*<N>): The determination of v(N)- 

v*(u*<N>). 
Step IV ("Mixing" with the term of the previous phase): The calculation of 

v*<N> = [(N- 1)/N] v*<N-1 > + (1/N) V(N). 

As P=rmax"co minver v u=minvmm maxuE, v' u, it can easily be deduced from the 

19 Brown [1, 2]; Robinson [21]. For a detailed discussion: Karlin [10, pp. 179-189]. 
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definitions of the evaluations that the upper optimum 0P*<N> = maxuc v*<N-1 >' u 

=maxu,,A v*KN-l>'u=v*KN-l>Iu(N) in the Nth phase (N=2, 3, ..) 
supplies an upper estimate for the OCI optimum P, the lower optimum 9*<N> = 

minv, v' u*<N> = minvsvL v'u*<N> v(N)Pu*<N> in the Nth phase (N= 1, 2, 3, ... ), 
a lower estimate for it, i.e., 

(1.37) P*<N> > P (N= 2,3,. ); *<N> < q (N= 1, 2, 3,. ..). 

Since, moreover, the series also imply, on account of their construction, the ficti- 
tious play of the matrix game with the payoff matrix V' U, the Brown-Robinson 
theorem is valid, so that 

(1.38) lim 0P<N> = lim %<N>=> , 
N- oo N- oo 

and the limit points of the series {u*<N>} and {v*<N>} are optimal central and 
sector strategies. 

The 3-termination of the iteration of regular fictitious play (where 3 is an 
arbitrary small positive number) is understood to mean the following termination 
of the above construction: Let N, be the least positive integer for which 

(1.39) P*KN,> *KN,>< 3 or P*KN,+ 1>-*KN,,>_ 3 

holds. According to (1.37) and (1.38), N, may be defined for an arbitrarily small 
positive number 3. Then: (1) The iteration is terminated at Step II of phase N6, 
or at Step I of phase (N,+ 1) (according to whether the first or the second in- 
equality in (1.39) has been satisfied); (2) The linear programming problems 

(1.40) Aixi. u<N,6>, xi >0, cxi-+max! (i= 1, . ., n) 

in the sectors are solved; (3) From the sector programs x(uK<N6>)= x* thus 
obtained, the feasible OCI program x= [xI', . , xn']' is composed. Since 

n n 

c' = X cx = ,y,(u,<N,>)'uKN,> =v*(u* N,>)'u*K N,6> = N< N,>, then, 
i=1 i=l 

acording to (1.39), 

(1.41) 0-6< c'x1*<0 . 

(1.41) is briefly referred to as the fact that x8* is a b-optimal OCI program. 
As a supplement, take the case where the polyhedral game (0&1, Y") can be solved 

uniquely for the sector-team player. It follows that its reduced version, the matrix 
game with the payoff matrix V' U, also possesses this property, so that according to 
the previously quoted Brown-Robinson theorem, the series {v*<N>} is convergent, 
andits limit is the unique optimal sector strategy. On the basis of part 3 of Theorem 2, 
this is none other than that sector shadow price system team whose every sector com- 
ponent is the (in consequence of the above conditions) unique, optimal OCI shadow 
price system. Symbolically: limN o v*<N> = [y ... ,y*'], where y*'b = minYc,y'b, 

The results pertaining to the fictitious play of the polyhedral game derived from 
the OCI problem, whose proofs have been furnished above, may be summarized as 
follows: 
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THEOREM 3: In the case of a regular polyhedral game derived from a solvable OCI 
problem, the latter may be solved through regular fictitious play to any required 
degree of accuracy, in the sense that for an arbitrarily small positive 3 the 5-termina- 
tion of regularfictitious play leads to a 3-optimal OCIprogram. If, at the same time, 
the derived regular polyhedral game can be uniquely solved for the sector-team 
player, the sector components of the mixed sector strategy series obtained in the 
course of regular fictitious play are equalized, i.e., they converge towards a common 
limit which is the optimal OCI shadow price system. 

1.3. Supplementary comments 

The OCI problem must be transformed into a regular polyhedral game. This is 
done by decomposition into sectors and the choice of a suitable generating set 
consisting of evaluable central programs. It has not yet been discussed whether 
this transformation can be carried out for all linear programming problems 
-regarded as OCI problems-and, if a problem can be transformed, which of the 
several kinds of transformation it is best to choose. Nor has the problem been 
examined of whether computing technique can deal with the central programming 
problem in Step I of the iterative phases, for in the general case the number of 
variables in the central programming problem, i.e., the number of components in 
the central program, is the product of the number of OCI conditions and the num- 
ber of sectors. 

It should be pointed out that in the special case where the elements of the matrix 
A and the bounding vector b are nonnegative numbers, under any decomposition 
the evaluable central programs are the vectors whose components form a non- 
negative partition of b, so that the set of evaluable central programs is a non-void, 
bounded convex polyhedral set. Since it follows that all feasible sector shadow 
price system teams are evaluable, any decomposition and the choice of a generating 
set consisting of all the evaluable central programs leads to a regular polyhedral 
game. Moreover, the central programming in Step I of the iteration phases of the 
fictitious play decomposes into "microprogramming," in the course of which the 
full bounds of each OCI condition are partitioned to the sector which possessed 
the largest shadow price referring to this condition. 

Similar results are also derived in the course of the transformation of the con- 
crete model in hand, that of a long-term macroeconomic planning problem. For 
this reason, the problem raised in the case of the general model is in this paper left 
open, and the necessary change will only be made on the concrete model.20 

20 Further problems relating to the general model are treated in a paper by Liptak [18]. 
During the editorial preparation of this paper, Professor J. F. Benders was kind enough to call 

our attention to his paper "Partitioning of Mixed Variables Programming Problems" (in Nume- 
rische Mathematik, 4, 1962, pp. 238-252.) Theorem 1 (dealing with the connection between the 
OCI problem and the two-level problem) and Theorem 2 (dealing with the connection between 
the OCI problem, the two-level problem, and the derived polyhedral game) of this paper are 
related to the "partitioning theorem" in his paper, though they are not equivalent to it. 
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2. THE CONCRETE MODEL: A LONG-TERM MACROECONOMIC PLANNING PROBLEM 

2.1. Description of the model 

While in the general model the point of departure was the OCI problem, in 
the case of the concrete model it is more convenient to begin the discussion with 
the form subsequent to the decomposition into sectors. We shall therefore proceed 
straightaway to write down the two-level problem derived from the OCI problem. 
Both the criterion (1.14) and the simplifying remarks (1.20)-(1.27) were applied in 
formulating the set of central programs. The various components of the central 
program and the sector programs are, in agreement with their economic nature, 
denoted by different letters, while their sign has been chosen for ease of notation. 

Planning is directed by the centre-in actual practice by the National Planning 
Bureau. There are altogether n sectors. Each sector is responsible for a particular 
group of products; in the subsequent discussion the term products will be used for 
product-groups, for the sake of brevity. The activities of the sector comprise not 
only the domestic production of the product concerned and the investments 
necessary for production, but also the export and import of the product. A long- 
term plan is to be worked out for a plan-term, consisting of altogether T periods. 

This model is not meant to determine all the targets of the national plan. The 
point of departure is a national economic plan that has already been elaborated 
(by "traditional," non-mathematical means, checked with an input-output table). 
Certain targets of this plan are adopted as constants in the programming table. In 
this paper they are called economic policy figures. 

The centre issues three kinds of directives to the sectors: 
(1) The centre tells the ith sector to provide a certain quantity of product to 

meet domestic requirements in the tth period. This quantity, whose symbol is r1,, is 
called the supply assignment (i= 1, . .. , n; t= 1, . . . , T). The centre does not 
prescribe whether the required quantity should be met from domestic production 
or imports-this will be determined by the sector program. Furthermore, it is the 
sector program that must determine whether the sector, beyond satisfying domestic 
requirements, also wishes to export. 

(2) The centre assigns to the ith sector a certain quantity of thejth product for 
the tth period. This is symbolized by Zijt and is called the materials quota (i= 1, . . ., n; 
j= 1, . . . , n; j# i; t= 1, . . . , T). The materials quota comprises the jth material 
derived both from home production and imports. 

(3) The centre assigns a certain complement of manpower to the ith sector for 
the tth period. This is symbolized by wit and is called the manpower quota. 

The directives are the variables of the central program. The constants in the 
constraint system of this central program are economic policy figures. These are: 

(1) Qj, which stands for the external consumption of the ith product necessary 
in the tth period. This comprises consumption by individuals and public bodies, 
including nonproductive investments. On the other hand, it does not include either 
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exports or-apart from certain exceptions-productive investments. (The ex- 
ceptions will be treated later.) 

(2) Ri, which is the bound of the ith supply assignment in the tth period. 
(This bound has no real economic meaning; its introduction is only necessary for 
the mathematical algorithm, but there is no practical difficulty about determining 
the quantity which the supply assignment is sure not to exceed.) 

(3) Wp, which is the manpower quota available for productive work in the 
economy in the tth year. 

Those central programs will be considered feasible for which 

n 

(2.1) E zjiit+Qit =rit<,K Rt (a=l,1. .. ,n; t=l, ..... ,T), 
j=l 
j?i 

n 

(2.2) E Wit = .t (t=l, ... ,T) 

(2.3) rit>,O, zijt>?O Wit>?O (i=l, . . . .. ,n; j=1,, .,n; 
j#i; t=1,. .., T). 

The variables in the programming model of the ith sector may be classified into 
several groups according to their economic nature: 

(1) Reproductive activities. These consist of the unchanged, continued operation 
of the output capacities for the ith product which already existed at the beginning 
of the plan-term. Several kinds of these activities may be incorporated in the 
model according to their technical features (e.g., backward or advanced factories). 
Let Xikt denote the level of the kth reproductive activity planned for the ith sector 
in the tth period:2' (xikt >0, k=repr22, t= 1, . . , T). 

(2) Investment activities. This concept includes both the establishment of new 
capacities and the production in these new facilities. Several types of investment 
activity may be incorporated in the model, on the basis of technical or economic 
features (e.g., the technology used, whether the machinery is imported or domestic- 
made, etc.). Moreover, within a particular type of investment activity (e.g., the 
establishment and operation of a particular plant in a certain way), several kinds 
of investment activity may be distinguished according to the period in which the 
investment is begun. A separate investment variable will correspond to each of 

21 Here, and also in the case of the other variables (except for investment activities), the unit of 
measurement for the level of activity is the quantity of the product stated in the natural units best 
suited for its measurement per unit period of time, or else in forint per unit period. It must be 
identical with the unit of measurement used for the ith product in the corresponding central 
product balance according to (2.1). 

22 Neither here nor in the other groups of sector activities will the numbers of the activities be 
stated. Instead, a suitable abbreviation after the suffix k will indicate the character of the activity 
concerned, e.g., k = repr, k = inv, etc. 
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these alternatives. Let xik denote the level of the kth investment activity of the ith 
sector23 (xik > 0, k=inv). 

(3) Export activities. Several kinds of export activities can appear in the model, 
according to their economic features (e.g., by markets, countries, etc.). Let Xikt 

denote the level of the kth export activity in the case of the ith product in the tth 
period (xikt > 0, k = exp, t = 1, . , T). 

(4) Bounded import activities. This group comprises only import activities which 
compete with the domestic output activities belonging to Groups 1 and 2 and are 
able to replace the latter and whose level is bounded by some external market 
factor. Several kinds of activities can figure in the model, according to their 
economic features (e.g., markets, etc.). Let Xikt denote the level of the kth bounded 
import activity in the case of the importation of the ith product in the tth period 

(xikt >0, k=imp, t= , ... , T). 
(5) Unbounded import activity. This is an import activity that, like the import 

activities of Group 4, competes with domestic production, but its level is not 
bounded either by extraneous market factors or by other influences. In some 
sectors there is justification for presuming that an unbounded import activity is a 
realistic proposition. In other sectors no such free, unbounded import activity 
actually exists. The method requires that this type of variable be used even in these 
latter sectors as an auxiliary variable, but the programming procedure used will 
automatically eliminate them from the program. Let the level of unbounded 
import in the ith sector be denoted by xi0 (xi0 > 0). 

The conditions prescribed for the ith sector program may be classified into one 
of two main groups. One group of conditions ensures that the sector should obey 
the directives received from the centre. The first condition is that 

(2.4) rit < Z fikt Xikt +fiOtXiO + E fikt Xik -<-i (ti1t, .. ., T). 
k repr, exp, k=inv 

imp 

The output coefficient fikt in this condition is as follows for the various sector 
activities: 

(1) For reproductive activities, fikt= l. (2) For investment activities, fikt >0, 

but for at least one t,fikt = 1. As a result of unit investment activity there will some- 
time, but at the latest during the last period, come to be established a capacity unit 
which will permit production of a unit quantity of the kth product during one 
period. The preceding output on the other hand will depend on when the invest- 
ment is begun, and on the amount of "turning up" required before it achieves 
normal operation. It is assumed that a specific time-distribution of output (and as 

23 Since, according to the above, an investment activity refers not to particular periods but is a 
series of investment activities over the full plan-term, the level xik is distinguished from the other 
variables in that it does not include the subscript t. The level of an investment activity is accord- 
ingly measured by the quantity of product which the facility that has been established produces 
when it is operated at full capacity, in terms of natural units or forint per unit plan period. 
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we shall see, of expenditures) is characteristic of the kth investment activity. It is 
also assumed that the capacities created by means of the investment will, after 
"turning up," always be utilized to the normal extent. If, thereforeJikt is for some 
value of t equal to 1, then it is also 1 for the periods (t+ 1), (t+2), etc. In this sense 
then, this group of activities differs from the reproductive ones in that there is no 
assumption that the latter's existing old capacities must necessarily be utilized 
fully. (3) In the case of export activities, fikt = -1. (4 and 5) For bounded and un- 
bounded import activities,fi kt= 1. 

The next series of conditions linked to the central directives is that 

(2.5) Z gijktXikt ijOt XiO Z gijkt xik(Zjt (j=I, . ., n, j#6i; 
k = repr, exp, k=inv t= . ). imp 

The input coefficient gijkt is the following for the various sector activities: 
(1) For reproductive activities, gljkt >0. Production, through its technological 

character, either requires or does not require the jth material. These materials 
requirements comprise both that of current operation and also that of upkeep of 
the old facilities: for general repair, replacement, and renovation necessary to 
ensure simple reproduction. (2) In the case of investment activities, gijkt >0. This 
comprises the products (e.g., machines) required by investment during the years 
when the new facility is established, and the products necessary during the years of 
operation both for current production and for the maintenance and replacement of 
the facilities. As in the case of output, it is here again assumed that the kth in- 
vestment activity is characterized by a certain distribution of material requirements 
in time. (3, 4, and 5) For all foreign trade activity, gijkt = 0. 

Finally, the last condition linked to the central directive is that 

(2.6) Z hiktxikt+hiotxio+ E hikt xik Wit (t=1, ... , T). 
k=repr, exp, k=inv 

imp 

The manpower-coefficient hikt is as follows for the various groups of activity: 
(1) In the case of reproductive activity, hikt >0, for without manpower there 

can be no production. (2) For investment activities, hikt >0. Before operation is 
begun it is 0; later it is positive-the development of its numerical value is a 
characteristic function of time. (3, 4, and 5) In foreign trade activities, hikt = 0. 

Beyond the conditions to secure observance of the central directives, special 
condition characteristics of the particular circumstances of the sector may also be 
stipulated. By way of example, reproductive activities might be bounded by the 
upper limit of existing facilities. Certain investment activities, e.g., the moderni- 
zation of existing plants, might be limited. Output in some sectors might be bounded 
by the country's natural resources. Certain export and import activities might be 
limited by market factors, etc. The special conditions may be written in the follow- 
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ing general form :24 

T 

(2.7) E L k E aixk b?, s=spec. 
t = 1 k = repr, exp k=inv 

imp 

Because of the artificial character of unbounded import activities, the coeffi- 
cients of these variables are 0 in all the above special conditions. We assume that 
the constraints (2.7) can be satisfied, so that we write 0 in place of the variables 
figuring in them; that is, b? >, 0 for every s. 

The aim of the ith sector's programming is that 

T 

(2.8) E E CiktXikt+CioXiO+ E CikXik-max!, 
t= 1 k=repr, exp k=inv 

imp 

i.e., the maximization of the sectoral objective function on the left hand side of 
(2.8). Here Cikt and Cik are the foreign exchange returns of the corresponding activity. 
These are the following for the various groups of activities: 

(1 and 2) For reproductive and investment activities the foreign currency 
returns are generally zero. An exception is formed by the production and in- 
vestment activities, which require noncompetitive imports that cannot be satisfied 
by home production. Noncompetitive import costs are regarded as negative 
foreign currency returns. (In the case of investment activities, the foreign currency 
returns naturally comprise all the noncompetitive import costs incurred throughout 
the plan-term.) (3) The foreign currency returns of export activities are positive. 
(4 and 5) The foreign currency returns of import activities are negative. If un- 
bounded imports are only a fictitious variable, they are weighted with very heavy 
negative foreign currency returns. It is also assumed with respect to the yield of 
foreign trade activities that 

(2.9) max Cikt < min {min (-Cikt), - ci0} (t=L 1 . . , T). 
k=exp k=imp 

On the macroeconomic scale, that central program is regarded as optimal 
under which the sum of the maximal values of the sectoral objective functions is 
maximal. 

In the dual of the ith primal sector problem according to (2.4)-(2.8) and under 
the central program (directives) denoted by (rit, Zijt, wit), let pit be the shadow 
price of the central directive rit; Cijt of Zijt; tit of wit; while 71it and aio will be the 
shadow prices of the special conditions bounded by Rit and bM. Then with the 
sector shadow price system (Pit, Cijt, oit, itt ui.) as the dual program, the ith 
dual sector problem has the following form: 

24 The abbreviation s = spec. expresses the fact that all the special conditions are enumerated 
in (2.7). See footnote 22 on p. 157. 
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n 

(2.10) fikt(it - Pit) + E gijktCij +hkt h it + E a? t cis > Cikt 
j=1 s =sspec 
j#i 

k= repr, exp, imp (t= 1,..., T), 

n 

(2.11) fiktrit -Pit) + E gijkt Cjt + hikt coit + a aisk Cs Cik 
j=1 s=spec 

k=0,inv (t=l,...,T), 

(2.12) Pit >0, Cijt >0, wit >?, 7r* > 0, ais > 0, (j= 1, * ,n, jo i 

T n 

(2.13) (Rit7rit-ritpit + E z jtjjt+wtcojt) + E bois-min! 
t=1 j=1 s=spec 

joi 

It will be left to the reader to check that the OCI problem corresponding to this 
two-level problem is solvable, and that the polyhedral game derived from it is a 
regular one. (In the latter case the criterion (1.14) and the boundedness of the set of 
feasible central programs may be used.) In the following, the iterative procedure 
of the 6-termination of the regular fictitious play, i.e., of the construction of a 
b-optimal macroeconomic program will be outlined (where 3 is an arbitrary small 
positive number). 

2.2. The process of iteration 

Since the set of feasible central programs is here bounded, any central program 
(rM , z (J) , w(1) ) may be made the starting point.25 Passing over the first phases, we 
come to the Nth phase. From the previous (N - l)st phase: (1) the "central me- 
mory" stores the upper optimum P*<N-1>, the central program (r*(<N-1>, 
z* <N-1>, w*<N-1>) sent down to the sectors, the sector shadow prices 
p*<N-1>, ~(<N-1>, a)<N- 1> sent up from the sectors, the sector optima 
(n-`), and the mixed special sector optimum components 4(<N-1>; (2) all 9ii 
the "sector memories" store the shadow prices p(<N- 1>, <NKN- 1>, <4N N- 1> 
sent up to the centre, and the simplex tableau and optimal basis used in computing 
the provisional sector shadow prices o7l) CI(i) w a) . (The terms and sym- 
bols enumerated will be defined below in the course of the analogous terms and 
symbols of the Nth phase.) 

Step I. Examination of whether the iteration can be terminated and the evalua- 
tion of the sector shadow prices that are sent up, at the centre: The formula 

n 

T*<N-1>= E '- is used to calculate the lower optimum of the previous 
i=1 

phase, and this is compared with the upper optimum, P*<N-1>, stored in the 
memory. 

25 For in the case of a bounded &, then UA = w. See Goldman [7, p. 49, Corollary IB]. 



162 J. KORNAI AND TH. LIPTAK 

Case 1. 0*K<N-1>-*K<N-1>< 6: N5=N-1. The iteration is terminated. 
The sectors are instructed to compute the primal optimal sector programs corre- 
sponding to the provisional sector shadow prices pl-l), ( t-1), c( N, using the 
simplex tableau and optimal basis stored in their memories.26 These sector pro- 
grams constitute a 3-optimal program of the long-term macroeconomic planning 
problem. 

Case 2. 1*<N-1>-*<N-1>>? : N5>N-1. The central evaluation of the 
sector shadow prices that are sent up is performed, i.e., the central objective 
function 

n T n 

Z Z (p,(<N-l>rit+ Z Cjt<N-1>zijt+a)+w<N-1>wit) 
j=1 
j*i 

is maximized under the conditions (2.1)-(2.3). This linear programming problem 
decomposes into two types of simply solvable "micro-programming" problems: 
(i) the programming problem 

n 

E zjit + Qit = rit < Rit, zjit > 0 ( = 1, . . ., n, j] #i; rit > 0), 
j=l 
j*i 

(2.14) n 

I Z *it<N-1>zjit-p*<N-1>6it-+max!, 
j=1 
j*i 

which yields the provisional production and distribution of the ith product in the 
tth period (i= 1, . . . , n; t= 1, ... , T); (ii) the programming problem 

n 

I Wit= wt, 
Ii=l 

(2.15) Wit>0 Q (=1, . . .; n), 
n 

c Eoi<N- 1>wit+max ! X 
i=l 

which formulates the provisional distribution of the economy's manpower quota 
in the tth period (t= 1, . . . , T) . 

A solution of (2.14) is as follows: 

(a) if maxji C*it<N-1> < p* <N-1>, then 

(2.16) r(N)_ n (N)= _r j =; 1~ .. ;. njOi 

26 The components of the optimal primal program may be directly read from the values of 
the "z-row", corresponding to the slack variables of the simplex tableau in the dual problem. 
See, for instance, Karlin [10, pp. 169-170]. 
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(b) if maxj C*.t<N- 1> = it<NN- 1> >p*<N - 1>,27then 

(2.17) r(N) = Rip z (N) = 
Q if 1Jo 0 , if J#jo. 

The solution of (2.15) is still simpler: if maxi 7)* <N- 1> =a)*t<N- 1>28, then 

N Wt, if i=Io 
(2.18) witf =O,ifi o. 

0 if i$io0. 

It is not difficult to see that the sum of the maxima derived in the course of the 
micro-programs (2.14)-(2.15) is 

T n 

(2.19) S f [(max Cit<N- 1> -p*<N- 1>)+ (Rit-Qit) 
t= 1 *- 1 j* ^* 

-p*<N-1>* Qi +max co<N-1>*Wt 

=(P#<N>3, say.9 

Hence the upper optimum in the Nth phase may be computed from the formula 

n 

(2.20) 0*<N>=q*(<N> + 0i<N-1>. 
sl= 

Next a comparison is made of the values 1*<N> and 1*<N->. 
Case 2/1. 0*<N> -*<N- 1><: Nj = N- 1. The iteration is terminated, and 

the 6-optimal macroeconomic program is computed in a fashion identical with 
Case 1. 

Case 2/2. 0*<N> -*<N- > > 6: N6 > N- 1. There then follows: 

Step IL Making a new central program to be sent down to the sectors: 

* N-i 1 (N) 
rit<N> = N r(t<N-1> + NKrit 

(2.21) z* t<Nf>= N1 z* <N-l> + 1 z(N) 
(2.21) <N>= N-1 (N) 

wW< = N N + N =( 1... n; j i; 

27 If the shadow price it <N - 1> is equally maximal in several sectors j (with i and t fixed), 
and if it is not less than t <N - 1>, then Rt - Qt may be partitioned between these sectors 
in any proportion. 

28 If the shadow price ot*<N - 1> is equally maximal in several sectors i (with t fixed), then 
Wt may be partitioned between them in any proportion. 

29 a+ is used to denote the positive part of c: + = max(cc, 0) . 
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Step III. The evaluation in the sectors of the central program component that 
has newly been sent down. The linear programming problems (2.10)-(2.13) 
are solved in the ith sector, with the new objective function coefficients rit<N>, 
z7 <KN>, w*K<N>. The simplex tableau and optimal base30 stored in the memory 
may be used for the calculation. Let the solutions (N) a(N) (N) (N) (N) thus 
obtained be called the provisional sector shadow prices; let the minimal value q(N) 

of the corresponding objective function according to (2.13) be called the sector 
optimum; and let the portion 

T 

(2.22) 0(N) = Rit ( )+ bo C4iN 
t=1 s=spec 

of the optimum concerned with the special shadow prices be called the special 
sector optimum component. 

Step IV. Preparing in the sectors the new sector shadow prices and mixed special 
sector optimum components to be sent up to the centre. In the ith sector it is 
necessary to compute 

N-1iI(N pt<N> = N p*t<N-1> + kptN) 

(2.23) J t<N> = N1 (.t<N-l> + N C(N) (j=1,.. . n, j#i; 

K<N> = N-1 * 1 (N) 
co N Wit<N-l> W cit 

and the mixed special sector optimum component 

(2.24) d1<N> = NN qi<N-1> J 1 No(N) 

When these-together with the sector optimum q,(N)_are sent up to the centre, the 
Nth iterative phase is completed. 

2.3. On the economic interpretation of the model 

The concrete model will now be discussed from the economic point of view. 
An attempt will be made to interpret some features and properties of the model in 
terms of economics, and some problems in ascertaining the parameters figuring in 
the model will be raised. 

(1) What does the objective function of the dual problem of the sector models 
express in terms of economics? Let us presume for a moment that the centre really 
lets the sector have its resources at a "price" corresponding to the shadow price 
which the sector reports back, and that at the same time it demands of the sector 
that it should not operate at a loss. If the sector reported back too high, "rosy" 

30 See, for instance, Suzuki [23, pp. 95-96]. 
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shadow prices (e.g., if it stated that a rise in the manpower quota would secure 
greater surplus returns than it is actually capable of, according to the optimal 
program), then the sector would operate at a loss. The minimization of the evalua- 
tion of the boundary conditions in terms of shadow prices, as an optimization 
requirement of the model and the nonprofit conditions in the constraints of the 
dual model express the fact that care must be taken to avoid over-estimating the 
modifications in the central directives which appear as limitations in the sector 
conditions, and to avoid over-estimating the effect of these modifications on the 
objective function. The minimization of the dual objective function expresses an 
approach of careful, responsible moderation in determining the indices of economic 
efficiency presented as part of the report back. 

(2) It is a noteworthy fact that in the case of a macroeconomic planning model 
the game-theoretical model may be realistically interpreted and invested with 
economic significance. The situation shows analogy with strategic games in that each 
player is in possession of certain information, but neither can make fully satisfactory 
decisions without obtaining some information from the other player. The centre 
has a broad purview, but it has no detailed knowledge of the special problems that 
are known to the sectors (e.g., the technical and cost figures for the various sec- 
tors, the special conditions limiting choice within the sector, etc.). The sectors see 
many details, but they have no ability to survey the great interrelations that can 
only be clear to the centre. Just as in strategic games, the situation which evolves 
depends on both players. Both the centre and the sectors clearly know that the 
measures employed by the other player exercise a great influence on the situation. 
Under such circumstances both players seek the relatively most reassuring strategy 
for themselves. This strategy is the "minimax" solution of the game. 

In the present model the acceptance of the minimax strategy means the following: 
Let us presume that the centre is "omniscient," is in possession of even those 
special detailed items of information that are usually only known accurately to the 
sectors. In this case (if ideal computing facilities were available), it would be able 
to elaborate the optimal program for the national economy (the optimal OCI 
program). The program thus determined would have a certain objective function 
value and result in optimal economic returns (the OCI optimum). 

If the centre (both in this model and in real life) lacks information, it will be 
unable to determine, without the collaboration of the sectors, the optimal program 
for the economy and the optimal value will not be achieved. The consequence 
of decisions taken independently of the sectors would be relative losses, which 
the centre must strive to cut. 

On the other hand, the sectors, without the directing and coordinating activity 
of the centre, will necessarily furnish a faulty evaluation of the resources and 
quotas allocated to them and cannot achieve the optimal program for the economy. 
Let us again presume for a moment (as was done earlier in defining the dual ob- 
jective function) that the sectors are made to pay a penalty for the surplus allocated 
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to them as the result of over-estimation of resources and quotas. Under such cir- 
cumstances, biased evaluation, i.e., a biased shadow price system, would result in 
a grave loss to the sector. The sectors would then obviously strive to make this loss 
as small as possible. 

It may thus be seen that both sides strive to reduce a specific kind of relative loss. 
The centre's aim is that as little as possible should be lost of the optimal capabilities 
of the economy, the sector's aim is that the optimal evaluations should be surpassed 
by as little as possible. The minimax solution is achieved when both players succeed 
in eliminating this relative loss. 

(3) Corresponding to Theorem 3 of this paper, a certain leveling trend of the 
shadow prices appears in the concrete model. First, the demand shadow price 
(Cjit) of the same product i is equalized between the various sectors, as are the 
demand and supply shadow prices (Cjit and pit) of the product. Second, the shadow 
price (wit) of the manpower quota allocated to the various sectors is equalized. 

This trend fully complies with the familiar optimum condition of "welfare- 
economics," according to which the utilization of the marginal returns of identical 
resources must be equal in the various spheres.3' 

The equalizing trend is, of course, only valid for shadow prices related to the 
same period. (It will be worth studying the ratios of the shadow prices of conse- 
cutive periods, for they will make it possible to determine a group of "discount 
rates.") 

(4) As has been pointed out, the economic policy figures of the present model are 
taken from the original plan, worked out by "traditional methods." Moreover, this 
original plan may also be chosen as the initial program for iteration. The first 
steps of the iteration should reveal whether or not the plan is realistic. If artificial 
variables (fictitious unbounded imports) appear in the sector programs, the original 
plan was not balanced, but the further steps of two-level planning will serve to 
balance it. If, however, it is not possible in the course of subsequent steps in two- 
level planning to eliminate the fictitious variables, then this is a warning that there 
is a contradiction in the economic policy figures. 

Two-level planning thus offers an opportunity to carry out a critical check of the 
original plan, to discover and obviate any contradictions it may contain. As the 
equalization of the shadow prices of the central directives is approached (e.g., as an 
approximately accurate knowledge of the OCI shadow prices of the external con- 
sumption Qit is obtained), so will further information become available for the 
critical evaluation of the economic policy figures adopted from the original plan 
(e.g., to decide whether it would not be opportune to set out from a different 
pattern of external consumption). 

(5) One of the most problematic features of this concrete model is the economic 
content of the objective function. The optimization of the foreign trade balance as 

31 See, for instance, the works of Samuelson [22] and Lerner [16]. 
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an optimum criterion is in the present description intended as nothing more than 
an example. In the course of discussions of this problem in Hungary, other ideas 
have also been advanced, e.g., the minimization of total manpower expenditure, or 
the maximization of external consumption according to a given pattern. (This is 
the type of objective function recommended by Kantorowich in his work [9].) In 
both cases the economic policy targets relating to the trade balance must be in- 
corporated in the constraint system. 

It is not intended in this paper to take a definite stand on this problem; it 
requires a many-sided theoretical and practical investigation. At any rate, in the 
case of the first experimental computing projects, it will be advisable to use several 
kinds of objective functions and to compare the results. 

(6) Finally, there is another grave problem which can be no more than men- 
tioned: the expression of society's time preference in the model. This is partly 
circumvented by prescribing external consumption separately for each period 
(naturally seeing that it should increase for each consecutive period, and that its 
pattern should change in the required manner). It is not, however, a matter of 
indifference as to when the surplus returns obtained as a result of the programming 
will arise-whether this is to be earlier or later. It may therefore be advantageous 
not simply to maximize the sum of all the returns for the whole plan period, but 
rather to maximize some discounted total. 

The other difficult question is linked to the finite duration of the plan-term. 
The structure of the model as described above may involve the danger of having 
the program prescribe only investments whose returns appear within the plan- 
term. This aspect would only be solved by planning for an infinite duration, but 
this device, because of other considerations, is not yet practicable. For this reason, 
as an approximation (or we might say, by way of a compromise), the following 
solution was chosen. 

The requirements (Qi,) of external consumption are made to include the needs 
of the so-called "carry-over investments," i.e., those that will continue after the 
end of the plan-term. For lack of any other source, the estimates of these figures 
are again adopted from the original plan. The authors are well aware of the 
problematic features of this solution, and the question will therefore continue to be 
investigated. 

CONCLUSION 

By way of conclusion, the following is a brief summary of the further trends of 
our research: 

(1) Our mathematical and computing research is directed mainly at elucidating 
how convergence in the course of two-level planning can be accelerated. Numerical 
experiments are being carried out to this end. It will require special study to 
determine whether, in the case of the concrete model, economic information that 
is available elsewhere could not be used to accelerate convergence. 
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(2) Parallel with the numerical experiments, preparations for the practical 
application of the concrete model have been begun. The National Planning Bureau 
wishes to make use of this method too, to obtain sounder foundations for long- 
term macroeconomic plans. It must, of course, be stressed that these calculations 
are at present no more than experimental. They are in the stage of scientific 
research and can only gradually become permanently used instruments of planning. 

For a more exact representation of the complicated economic interconnections, 
the structure of the model applied in practice, is in some respects different from the 
simple model described in Section 2 of this paper. (E.g., a sector has not one, but 
several products; there are several primary factors, etc.) 

(3) The general model described in Section 1 of the paper may also be concretely 
applied to other practical problems. Thus, for instance, the determination of the 
short-term plan of Hungarian cotton fabric exports (their composition by products 
and markets) is now under preparation, using a method analogous to the two-level 
planning one.32 It is also intended to use the method for the elaboration of regional 
plans-in this case each sector corresponds to a geographic region. The authors 
hope that once the computing problems have been solved, the method can be 
widely applied. 

Computing Centre of the Hungarian Academy of Sciences, 
National Planning Office, Scientific Department, Budapest 

REFERENCES 

[1] BROWN, G. W.: "Some Notes on Computation of Games Solutions," RAND Corporation, 
D-436, 1949. 

[2] : "Iterative Solution of Games by Fictitious Play." See [11, pp. 374-376]. 
[3] DANTZIG, G. B., AND P. WOLFE: "Decomposition Principle for Linear Programs," Opera- 

tions Research, 8 (1960), pp. 101-111. 
[4] : "The Decomposition Algorithm for Linear Programs," Econometrica, 29 (1961), 

pp. 767-778. 
[5] FRISCH, R.: A Survey of Types of Economic Forecasting and Programming, and a Brief 

Description of the Oslo Channel Model. Memorandum from the Institute of Economics, 
University of Oslo, 1961. 

[6] GER6, M.: "Az 1965. evi sakktablam6rleg" (The Chess-Board Balance for 1965"), Kozgaz- 
dasdgi Szemle, 8 (1960), pp. 1156-1168. 

[7] GOLDMAN, A. J.: "Resolution and Separation Theorems for Polyhedral Convex ISets." 
See [15, pp. 41-51]. 

[8] GOLDMAN, A. J., AND A. W. TUCKER: "Theory of Linear Programming," See [15, pp. 
53-97]. 

[9] KANTOROWICH, L. V.: Economic Calculation of Optimal Utilization of Resources (in Russian), 
Publishing House of the Academy of Sciences of the USSR. Moscow, 1959. 

[10] KARLIN, S.: Mathematical Methods and Theory in Games, Programming, and Economics. 

32 See Liptak and Nagy [19]. 



TWO-LEVEL PLANNING 169 

Vol. I.: Matrix Games, Programming, and Mathematical Economics. Addison-Wesley, 
Reading, Mass., USA-London, 1959. 

[11] KOOPMANS, T. C., EDITOR: Activity Analysis of Production and Allocation. Cowles Com- 
mission Monographs No. 13. Wiley-Chapman, New York-London, 1951. 

[12] KORNAI, J.: A beruhdzdsok matematikai programozdsa (The mathematical Programming of 
Investments). Kozgazdasagi es Jogi Konyvkiado, Budapest, 1962. 

[13] KORNAI, J., AND T. LIPTAK: Ketszintll terveze's.iMatematikaiprogramozdsi modszer a nepgazda- 
sagi terv javitdsdra. (Two-Level Planning. A Mathematical Programming Method for Im- 
proving the Plan of the National Economy.) A MTA Szamitastechnikai Kozpontja (Com- 
puting Centre of the Hungarian Academy of Science), Budapest, 1962, sokszorositott 
(duplicated). 

[14] "K6tszintu tervezes: Jatekelmeleti modell es iterativ szamitasi eljaras nepgazdasagi 
tavlati tervezesi feladatok megoldasara." ("Two-Level Planning: A Game-theoretical 
Model and Iterative Computing Procedure for Solving Long-Term Planning Problems of 
the National Economy") Publications of the Mathematical Institute of the Hungarian 
Academy of Sciences, 7 (1962), pp. 577-621. 

[15] KuHN, H. W., AND A. W. TUCKER, EDITORS: Linear Inequalities and Related Systems. 
Annals of Mathematics Studies No. 38. Princeton, N.J., USA, 1956. 

[16] LERNER, A. P.: The Economics of Control. MacMillan, New York, 1949. 
[17] LIPTAK, T.: Ketszintii tervezes (M6dositott matematikai resz) (Two-Level Planning: Mathe- 

matical Part Reconsidered)). A MTA Szamitastechnikai Kozpontja (Computing Centre of 
the Hungarian Academy of Science), Budapest, 1962, sokszorositott (duplicated). 

[18] Two-Level Programming. (A lecture delivered in the Colloquium on Applications 
of Mathematics in Economics held at Budapest 18-22 June, 1963.) Bureau for Compu- 
tation and Mechanisation of Building Administration, Publ. No. 3, Budapest, 1963. 
(To appear in the Proceedings of the above Colloquium.) 

[19] LIPTAK, TH., AND A. NAQY: "A Short-Run Optimization Model of Hungarian Cotton 
Fabric Exports," Economics of Planning, 3 (1963), pp. 117-140. 

[20] McKINsEY, J. C. C.: Introduction to the Theory of Games. The RAND Series, McGraw-Hill, 
New York-Toronto-London, 1952. 

[21] ROBINSON, J.: "An Iterative Method of Solving a Game," Annals of Mathematics, 54 
(1951), pp. 296-301. 

[22] SAMUELSON, P. A.: Foundations of Economic Analysis, Harvard University Press, Cambridge, 
1948. 

[23] SuzuKi, Y.: "Note on Linear Programming," Annals of the Institute of Statistical Mathe- 
matics, 10 (1959), pp. 89-105. 

[24] TRZECIAKOWSKI, W.: The Model of Optimization of Foreign Planned Economy and Its 
Applications, Warszawa, 1961 (rotaprinted). 

[25] WOLFE, P.: "Determinateness of Polyhedral Games," See [15, pp. 195-198]. 


	Article Contents
	p. 141
	p. 142
	p. 143
	p. 144
	p. 145
	p. 146
	p. 147
	p. 148
	p. 149
	p. 150
	p. 151
	p. 152
	p. 153
	p. 154
	p. 155
	p. 156
	p. 157
	p. 158
	p. 159
	p. 160
	p. 161
	p. 162
	p. 163
	p. 164
	p. 165
	p. 166
	p. 167
	p. 168
	p. 169

	Issue Table of Contents
	Econometrica, Vol. 33, No. 1 (Jan., 1965), pp. i-viii+1-263
	Volume Information [pp.  i - viii]
	Front Matter [pp.  247 - 247]
	[Photograph]: Edmond Malinvaud, President of the Econometric Society, 1963; Vice-President of the Econometric Society, 1962
	A Capital Intensive Approach to the Small Sample Properties of Various Simultaneous Equation Estimators [pp.  1 - 41]
	Optimal Paths of Capital Accumulation Under the Minimum Time Objective [pp.  42 - 66]
	The Information Approach to Demand Analysis [pp.  67 - 87]
	The Dynamics of Stock Trading [pp.  88 - 113]
	A Systematic Approach to Macroeconomic Policy Design [pp.  114 - 140]
	Two-Level Planning [pp.  141 - 169]
	The Evaluation of Infinite Utility Streams [pp.  170 - 177]
	The Distributed Lag Between Capital Appropriations and Expenditures [pp.  178 - 196]
	Identifiability Criteria in Nonlinear Systems: A Further Note [pp.  197 - 205]
	The Estimation of Relationships Involving Distributed Lags [pp.  206 - 224]
	The Order of Acquisition of Consumer Durables [pp.  225 - 235]
	Notes and Comments
	The Programming Approach in Multiple Character Studies [pp.  236 - 237]
	An Elementary Proof of the Existence and Uniqueness of Competitive Equilibrium in Graham's Model of World Trade [pp.  238 - 240]
	Causal Systems and Stability [p.  241]
	Causal Systems and Stability: Reply to R. W. Clower [pp.  242 - 243]
	Least Squares and Conditional Prediction [p.  244]
	"The Birth Rate and Economic Development: An Empirical Study"--Comment [p.  245]
	"The Birth Rate and Economic Development: An Empirical Study"--Rejoinder [p.  246]

	Book Reviews
	untitled [p.  248]
	untitled [pp.  249 - 250]
	untitled [pp.  250 - 251]
	untitled [pp.  251 - 252]
	untitled [pp.  252 - 254]
	untitled [pp.  254 - 255]
	untitled [pp.  255 - 256]
	untitled [pp.  256 - 257]
	untitled [pp.  257 - 258]
	untitled [pp.  258 - 260]
	untitled [pp.  260 - 261]

	Announcement of First World Congress of the Econometric Society [p.  262]
	Appointment of New Co-Editor of Econometrica [pp.  262 - 263]
	Proposed Election of Fellows, 1965 [p.  263]
	News Notes [p.  263]
	Back Matter



